
Greedy algorithm for partial set cover problem

In the set cover problem we are given a universe E of elements and a family {S1, S2, ..., Sm} of E’s subsets.
The goal is to find a collection of subsets indexed by I ⊂ {1, ...,m} that minimizes

∑
j∈I wj such that∣∣∣⋃j∈I Sj

∣∣∣ = |E|. Consider the partial cover problem, in which one finds a collection of subsets indexed by I

that minimizes
∑

j∈I wj such that
∣∣∣⋃j∈I Sj

∣∣∣ ≥ p|E| where 0 < p < 1 is some constant. Consider the greedy

algorithm for partial cover.

1. Prove that the greedy algorithm for partial cover constructs a solution of value no more than(
1 + ln

(
1

1−p

))
·OPTSC , where OPTSC is the value of the optimal solution to the set cover problem

(note: real set cover, not partial set cover).

2. Prove that the greedy algorithm for the partial cover problem gives an
Hd|E|·pe-approximation algorithm, where Hn = 1 + 1

2 + 1
3 + ... + 1

n .

Solution 1.1.

Let be:

• n the number of elements;

• Ci the number of elements uncovered at iteration i.

In class we have seen that in the greedy algorithm when a set Si is added, there is a set with cost less or

equal to OPTSC

Ci
.

Follows that the element ej covered by set Si has cost:

cost(ej) ≤
OPTSC

Ci
≤ OPTSC

n− j + 1

We count the cost of the last set separately and we call n′ < bnpc the number of elements covered before
that the last set is added:

n′∑
j=1

cost(ej) ≤
n′∑
j=1

OPTSC

n− j + 1
=
(
Hn −Hn−n′

)
·OPTSC

⇒
(
Hn −Hn−n′

)
·OPTSC ≤

(
Hn −Hn−bnpc

)
·OPTSC ≤

(
1 + ln(n)− ln(n− np)

)
·OPTSC =

=

(
1 + ln

(
1

1− p

))
·OPTSC

The last set will cost at most OPTSC thus:

CGREEDY ≤
(

1 + ln

(
1

1− p

))
·OPTSC + OPTSC =

(
2 + ln

(
1

1− p

))
·OPTSC

�

1



Solution 1.2.

Choose Ci to represent the currently uncovered number of items. Thus there are exactly n−Ci covered items
at each moment and another C ′i = Ci− (n−dpne) items to cover. In this algorithm instead of taking the set
corresponding to the minimum cost among wi

|Si∩Ci| , the new set’s cost is calculated dividing by the minimum

between |Si ∩ Ci| and C ′i. Thus, we will take the set corresponding to the element ej that minimizes

wj

min{|Sj ∩ Ci|, C ′i}

This change is needed to properly handle the partial cover problem so that the cost of solution is only
evaluated within the first dnpe items. Let ci be the cost charged to ei, so if ei belongs to Sj we have
ci =

wj

min{|Sj∩Ci|,C′
i}

.

Let SOL be an optimal solution. Using the algorithm just described above, we have

ci =
wj

min{|Sj ∩ Ci|, C ′i}
≤ wu

min{|Su ∩ Ci|, C ′i}
∀u with |Su ∩ Ci| > 0

This implies

wj

min{|Sj ∩ Ci|, C ′i}
·min{|Su ∩ Ci|, C ′i} ≤ wu ∀u

We have

OPT =
∑

j∈SOL

wu ≥
wj

min{|Sj ∩ Ci|, C ′i}
·
∑

j∈SOL

min{|Su ∩ Ci|, C ′i} = ci ·
∑

j∈SOL

min{|Su ∩ Ci|, C ′i} ≥ ciC
′
i

remembering that
⋃

u∈SOL Su ∩ Ci covers at least C ′i items. It follows:

ci ≤
OPT

C ′i
≤ OPT

i

The total cost of solution is

CGRE
PSC = cdpne + ... + c1 ≤ OPT ·

(
1

dpne
+ ... + 1

)
= Hdpne ·OPT
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