Linear program for partial set cover problem

Consider the following linear program for set cover problem:

$$
\begin{array}{ll}
& \min \sum_{S} w_{s} x_{s} \\
\text { s.t. } & \sum_{S: e \in S} x_{s} \geq 1 \quad \forall e \in E \\
x_{S} \geq 0 \quad \forall S \in\left\{S_{1}, \ldots, S_{m}\right\}
\end{array}
$$

An analog of the above LP for a partial cover problem would be

$$
\begin{gathered}
\min \sum_{S} w_{s} x_{s} \\
\text { s.t. } \quad \sum_{S: e \in S} x_{s} \geq c_{e} \quad \forall e \in E \\
\sum_{e} c_{e} \geq p \cdot|E| \\
1 \geq c_{e} \geq 0 \quad \forall e \in E \\
x_{s} \geq 0 \quad \forall S \in\left\{S_{1}, \ldots, S_{m}\right\}
\end{gathered}
$$

where variable c_{e} measures the coverage of element e.

Consider an algorithm for partial cover which randomly rounds the solution of linear program 1 (the one for real set cover). Prove that this algolrithm constructs a solution of value no more than $\left(1+\ln \left(\frac{1}{1-p}\right)\right)$. $O P T_{L P}^{S C}$, where $O P T_{L P}^{S C}$ is the value of the optimal solution to the set cover linear program.

Solution

We are interested to prove that the randomized rounding on LP for real set cover is an approximate solution for partial cover with optimal value $O\left(1+\ln \left(\frac{1}{1-p}\right) O P T_{L P}^{S C}\right)$ where $O P T_{L P}^{S C}$ is the solution of the LP for the set cover problem. Let be:

- $\beta=1+\ln \left(\frac{1}{1-p}\right)$;
- $\alpha>1$ a costant;
- $\delta>1$ a costant;
- $S O L$ is the solution obtained by the union of some iterated randomized roundings;
- N number of elements.

We are interestend in prove that

$$
P\left(\operatorname{cost}(S O L) \leq \delta \beta \cdot O P T_{L P}^{S C} \wedge S O L \text { is feasible }\right) \geq \frac{1}{2}
$$

or

$$
1-P\left(\operatorname{cost}(S O L)>\delta \beta \cdot O P T_{L P}^{S C}\right)-P(S O L \text { is not feasible }) \geq \frac{1}{2}
$$

If we randomize each variable x_{i} to 1 with probability x_{i}^{*} and we iterate the process $\alpha \beta$ times, it follows that:

$$
\mathbb{E}(\operatorname{cost}(S O L)) \leq \alpha \beta \cdot O P T_{L P}^{S C}
$$

By Markov Inequality we have:

$$
\begin{gathered}
P\left(\operatorname{cost}(S O L)>\delta \beta \cdot O P T_{L P}^{S C}\right) \leq \frac{\mathbb{E}(\operatorname{cost}(S O L))}{\delta \beta \cdot O P T_{L P}^{S C}} \\
P\left(\operatorname{cost}(S O L) \geq \delta \beta \cdot O P T_{L P}^{S C}\right) \leq \frac{\mathbb{E}(\operatorname{cost}(S O L))}{\delta \beta \cdot O P T_{L P}^{S C}} \leq \frac{\alpha \beta \cdot O P T_{L P}^{S C}}{\delta \beta \cdot O P T_{L P}^{S C}}=\frac{\alpha}{\delta}
\end{gathered}
$$

We can define:

- a random variable X_{j} such that $X_{i}= \begin{cases}1 & \text { if element } i \text { is not covered } \\ 0 & \text { else }\end{cases}$
- $X=\sum_{j \in U} X_{i}$ is the random variable equal to the number of covered elements;

$$
\begin{aligned}
\Rightarrow & P(S O L \text { is not feasible })=P(X>N(1-p)) \\
& P\left(X_{i}=1\right)=P(\text { A given element is covered })
\end{aligned}
$$

Supposing that e_{j} is in k sets and is not covered only if in the $\alpha \beta$ iteration is never taken:

$$
P\left(X_{i}=1\right)=\left[\prod_{j: e_{i} \in S_{j}}\left(1-x_{j}^{*}\right)\right]^{\alpha \beta} \leq\left[\left(1-\frac{\sum_{j: e_{i} \in S_{j}}\left(x_{j}^{*}\right)}{k}\right)^{k}\right]^{\alpha \beta} \leq\left[\left(1-\frac{1}{k}\right)^{k}\right]^{\alpha \beta} \leq\left[\frac{1}{e}\right]^{\alpha \beta}
$$

Follows that (using again the Markov Inequality):

$$
\begin{gathered}
P(X>N(1-p)) \leq P(X \geq N(1-p)) \leq \frac{\mathbb{E}(X)}{N(1-p)}= \\
=\frac{\sum_{i=1}^{N} \mathbb{E}\left(X_{i}\right)}{N(1-p)}=\frac{\sum_{i=1}^{|U|} P\left(X_{i}=1\right)}{N(1-p)}=N\left[\frac{1}{e}\right]^{\alpha \beta} \frac{1}{N(1-p)}= \\
N\left[\frac{1-p}{e}\right]^{\alpha} \frac{1}{N(1-p)}=\frac{(1-p)^{\alpha-1}}{e^{\alpha}} \leq \frac{1}{e^{\alpha}}
\end{gathered}
$$

Finally:

$$
P\left(\operatorname{cost}(S O L) \leq \delta \beta \cdot O P T_{L P}^{S C} \wedge S O L \text { is feasible }\right) \geq 1-\frac{\alpha}{\delta}-\frac{1}{e^{\alpha}} \geq \frac{1}{2}
$$

that for $\delta=4 \alpha$ and any $\alpha \geq 2$ we obtain $\frac{1}{e^{\alpha}} \leq \frac{1}{4}$. It follows:

$$
P\left(\operatorname{cost}(S O L) \leq \delta \beta \cdot O P T_{L P}^{S C} \wedge S O L \text { is feasible }\right) \geq \frac{1}{2}
$$

